
Introducing
Supercomputing
Part 2

Pawsey Webinar Series

27 July 2020

Supercomputing 2, p.2

What you can do after this
course (Parts 1 & 2)
Å List and describe the major parts of a supercomputer

Å Log into a supercomputer

Å Find and use available software on a supercomputer

Å Explain how a supercomputer is shared among
researchers

Å Submit a job to the supercomputing queue

Å Define key supercomputer terms, including SLURM,
partitions, nodes, schedulers, data movers

Å Prerequisite knowledge

Å Linux

Using High
Performance Storage

ÅSupercomputing Overview

ÅLogging In

ÅSharing Supercomputers

ÅSubmitting Jobs

ÅUsing High Performance Storage

ÅRunning Jobs

ÅReal World HPC Use

ÅGetting Help

Supercomputing 2, p.4

High Performance Storage

Å Large, multi-core systems must be coupled to large, fast storage

to make best use of the computational resources.

Å Supercomputer have fast global storage meant for short term

storage.
Å Storage is shared amongst users

Å All nodes can access the data

Å Meant to be a temporary working area

Å Supercomputers sometimes have local node storage
Å Other nodes cannot access the data

Å Not shared with other users

Supercomputing 2, p.5

Example: Pawsey /scratch
ÅLarge 3 PB capacity

ÅShared by all users, with user quota of 1 million files limit.

ÅTemporary space for queued, running, or recently finished

jobs

ÅYour directory is /scratch/projectname/username

ÅPath is available in $MYSCRATCH environment variable

ÅFiles on /scratch are purged after 30 days

ÅMove or delete your data before they are purged

ÅDo not use purging for data management

Supercomputing 2, p.6

Transferring Data

Pawsey
Supercomputers

Pawsey FirewallTypical Firewall

Å Done through Data Mover Nodes: externally connected servers
dedicated to moving data to/from storage, which see all Pawsey
global storage locations (hpc-data.pawsey.org.au)

Å Access via SCP/SFTP using SSH port (Pawsey firewalls allow
both incoming/outgoing SSH connections)

ÅMost organisations & home routers block incoming SSH connections

Å Push data to Pawsey data mover nodes

Å Pull data from Pawsey data mover nodes

http://hpc-data.pawsey.org.au

Supercomputing 2, p.7

Excercise: Transferring Data
For file transfers, run scp from the remote system using the data transfer
nodes.

Try copying file to Pawsey:

scp filename username@hpc-
data.pawsey.org.au:/scratch/ projectname / username

Copy a file from Pawsey:

scp username@hpc-
data.pawsey.org.au:/scratch/ projectname / username/filename ./

Use the same username & password as a normal ssh login.

There are many scp clients programs with graphical interfaces, such as
MobaXTerm, FileZilla (& WinSCP for Windows).

Å Ensure username/password is correct as programs automatically retry and
can trigger IP blocking. Suggest dissabling auto retry in the software.

*We suggest more robust copy commands like rsync over scp

Supercomputing 2, p.8

Exercise: Backing Up

Practice data transfer by backing up the course material.

Exit the session, then use scp to copy via a data transfer node:
exit
scp - r cou###@hpc-
data.pawsey.org.au:/group/courses01/ cou### ./

For GUI try Filezilla

https://filezilla-project.org/

Supercomputing 2, p.9

Transferring Data
Batch job access to data mover
nodes via theñcopyqò partition

ÅLocated on Zeus

ÅAvailable to all Pawsey machines

#!/bin/bash Ƶlogin

#SBATCH -- partition= copyq

#SBATCH -- cluster= zeus

#SBATCH -- ntasks =1

#SBATCH -- account=[user - account]

#SBATCH -- time=06:00:00

#SBATCH -- export=NONE

stage data

module load python

python ./data - mover.py

Running Jobs

ÅSupercomputing Overview

ÅLogging In

ÅSharing Supercomputers

ÅSubmitting Jobs

ÅUsing High Performance Storage

ÅRunning Jobs

ÅReal World HPC Use

ÅGetting Help

Supercomputing 2, p.11

Compute Nodes

Å Access is provided via the scheduler

Å Compute nodes are like workstations with a fast interconnect

Å Jobs can span multiple compute nodes

Å Parallelism across compute nodes is how
significant performance improvements are achieved.

Supercomputing 2, p.12

Quick Aside: Parallel
Programming

OpenMP (Open Multi-Processing)
www.openmp.org

ÅCollection of compiler directives,
library routines, & environment
variables for parallelism in C/C++,
Fortran

ÅThread parallelisation for shared-
memory, multiple CPU (multi-core)
systems. Also has instructions to
heterogeneous processing systems
(CPU + GPU)

MPI (Message Passing Interface)
www.mpi-forum.org

ÅCollection of library routines, and
environment variables for message-
passing parallelism in C/C++, Fortran
(and Python/R).

ÅSeveral implementations available:
OpenMPI (www.open-mpi.org/),
MPICH (www.mpich.org/)

ÅMPI processes run software on a
distributed memory machine,
contains functions that broadcasts
data from one processor to another
(point-to-point), many-to-one, one-to-
many, and many-to-many.

https://www.openmp.org/
http://www.mpi-forum.org/
https://www.open-mpi.org/
https://www.mpich.org/

Supercomputing 2, p.13

Accessing Software

Various software is provided to support work flows on the systems:

ÅOperating System (SLES or CLE)

ÅCompilers (e.g. Intel, GCC, Cray, PGI)

ÅDebuggers and Profilers (e.g. MAP, DDT)

ÅPerformant mathematical libraries (e.g. MKL, Lapack, Petsc)

ÅParallel programming libraries (e.g. MPI)

ÅFile format libraries for parallel IO (e.g. HDF5)

Applications that are widely used by a large number of groups are
often provided.

Not all of the above software is visible as soon as you log in.

https://software.intel.com/content/www/us/en/develop/tools/compilers.html
https://gcc.gnu.org/
https://www.pgroup.com/index.htm
https://www.arm.com/products/development-tools/server-and-hpc/forge/map
https://www.arm.com/products/development-tools/server-and-hpc/forge/ddt
https://software.intel.com/content/www/us/en/develop/tools/math-kernel-library.html
http://www.netlib.org/lapack/
https://www.mcs.anl.gov/petsc/
https://www.open-mpi.org/
https://www.hdfgroup.org/solutions/hdf5/

Supercomputing 2, p.14

Accessing Software

Software is loaded through theñmoduleò to prevent
conflicts, handle prerequisites & different versions

Command Description

module avail Show available modules

module list List loaded modules

module load modulename Load a module into the current

environment

module unload modulename Unload a module

module swap module1
module2

Swap a loaded module with another

module whatis modulename See info about module

https://modules.readthedocs.io/en/latest/module.html

Supercomputing 2, p.15

Modules

Most modules depend on an architecture and compiler,
to allow the use of one module for multiple
combinations.

System Architecture

modules

Compiler

modules

Magnus cray-sandybridge

cray-haswell

PrgEnv-cray

PrgEnv-gnu

PrgEnv-intel

Zeus sandybridge

broadwell

gcc

intel

pgi

Supercomputing 2, p.16

Example: Module
Loading some modules with the wrong prerequisites will generate a conflict error:

module swap gcc intel
module load gromacs/2018

Lmod has detected the following error: Cannot load module
" gromacs/2018" because these module(s) are loaded:

intel/17.0.5
While processing the following module(s):
Module fullname Module Filename
-------------- ---------------
gromacs/2018 / pawsey/sles12sp3/ modulefiles /apps/ gromacs/2018.lua

On Crays, switch to the desired programming environment first:

module swap PrgEnv- cray PrgEnv- intel

On Zeus, switch to the desired architecture and compiler first:

module swap sandybridge broadwell
module swap gcc intel

Supercomputing 2, p.17

Exercise: Modules
Explore the following module commands:

module avail

module list

module whatis hdf5

Supercomputing 2, p.18

Exercise: Modules

Watch what happens to the paths when you run these
commands in order

module load hdf5
module show hdf5
module swap gcc intel
module swap sandybridge broadwell
module show hdf5
module unload hdf5

Supercomputing 2, p.19

Launching Programs onto
Compute Nodes

The SLURM scheduler launches programs using srun . Arguments
determine the parallelism used

-N number of nodes

-n number of tasks (for process parallelism e.g. MPI)

-c cores per task (for thread parallelism e.g. OpenMP)

While these are already provided in the SBATCHdirectives, they can
be provided again not to rely on defaults.

https://slurm.schedmd.com/documentation.html
https://slurm.schedmd.com/srun.html

Supercomputing 2, p.20

Serial (single core) Programs

ÅOn Zeus, multiple jobs can share nodes. You can
request a single core of a node

ÅSerial commands should still use srun , but can be run
without it in the jobscript

ÅOn Magnus the compute node (containing 24 cores) is
assigned exclusively to your job. Do not run a serial
job, as it will waste idle cores.

Supercomputing 2, p.21

Example: Serial Python

#!/bin/bash - l
#SBATCH -- job - name=hello - serial
#SBATCH -- nodes=1
#SBATCH -- tasks - per - node=1
#SBATCH -- cpus- per - task=1
#SBATCH -- time=00:05:00

load modules

module load python/3.6.3

launch serial python script

srun python3 hello - serial.py

The script can be submitted to the scheduler with:

sbatch hello - serial.slurm

Material found here

J
o
b
 p

ro
p
e
rt

ie
s

&
 R

e
s
o
u
rc

e
s

S
o
ft
w

a
re

L
a
u
n
c
h
!

https://github.com/PawseySC/Introductory-Supercomputing/tree/master/hello-serial

Supercomputing 2, p.22

Example: OpenMP

This will run 1 process with 28 threads on Zeus, using 28 cores for up to 5 minutes:

#!/bin/bash - l
#SBATCH -- job - name=hello - openmp
#SBATCH -- nodes=1
#SBATCH -- tasks - per - node=1
#SBATCH -- cpus- per - task=28
#SBATCH -- time=00:05:00

set OpenMP environment variables
export OMP_NUM_THREADS=28
export OMP_PLACES=cores=
export OMP_PROC_BIND=close

launch OpenMP program
srun - n 1 - c ${OMP_NUM_THREADS} ./hello- openmp- gcc

The program can be compiled and the script can be submitted to the scheduler with:

cd hello - openmp
make - f Makefile.gcc
sbatch hello - openmp- gcc.slurm

Material found here

https://github.com/PawseySC/Introductory-Supercomputing/tree/master/hello-openmp

Supercomputing 2, p.23

Example: MPI

This will run 28 MPI processes on 1 node on Zeus:
#!/bin/bash - l
#SBATCH -- job - name=hello - mpi
#SBATCH -- nodes=1
#SBATCH -- tasks - per - node=28
#SBATCH -- cpus- per - task=1
#SBATCH -- time=00:05:00

prepare MPI environment
module load openmpi

launch MPU program=
srun - N 1 - n 28 ./hello - mpi

The script can be submitted to the scheduler with:

cd hello - mpi
module load openmpi
make
sbatch hello - mpi.slurm

Material found here

https://github.com/PawseySC/Introductory-Supercomputing/tree/master/hello-mpi

Supercomputing 2, p.24

Exercise: Run a Job
Run hello-serial.py on a Zeus compute node.

Move into the exercise directory:

cd hello - serial

View the submission script:

less hello - serial.slurm

Submit the script to the SLURM scheduler:

sbatch -- reservation= courseq hello - serial.slurm

Check the queue:

squeue - u username

View the output:

less slurm - #jobid .out

Supercomputing 2, p.25

Interactive Jobs
ÅUsed for Debugging, Compiling, Pre/post-processing

ÅAccess via salloc instead of sbatch

ÅYou still need srun to place jobs onto compute nodes

ÅResource requests must be included as command line arguments. Ex:

salloc -- tasks=16 -- time=00:10:00

srun make - j 16

Supercomputing 2, p.26

Interactive Jobs
May need to wait while if there are no free nodes

salloc -- tasks 1

salloc : Pending job allocation 2315927

salloc : job 2315927 queued and waiting for resources

It may appear to hang ïwaiting for resources to become available.

For small interactive jobs on Magnus/Zeus use debugq to wait less.

salloc -- tasks=1 -- time=10:00 - p debugq

Supercomputing 2, p.27

Exercise: Interactive Session
Run hello-serial.py interactively on a Zeus compute node (you may need to
wait while it is in the queue):

salloc -- reservation= courseq -- tasks=1 -- time=00:10:00

module load python/3.6.3

srun - n 1 python3 hello - serial.py

exit

Real World HPC
Use
ÅSupercomputing Overview

ÅLogging In

ÅSharing Supercomputers

ÅSubmitting Jobs

ÅUsing High Performance Storage

ÅRunning Jobs

ÅReal World HPC Use

ÅGetting Help

Supercomputing 2, p.29

Real World Use

What do you want to do?

Å Run you code to get answers as FAST as possible

Å Think of wall time: Length of real-world time taken. E.g.
simulation takes 12 hours

How do you get there?

Å Need to think of the problem you are solving and how you can
use many computing elements to tackle the problem efficiently

Å Need to think of cost = walltime * resources used. E.g. 12 hours *
100 nodes = 1,200 node hours (= 28,800 core hours on a 24
cores per node system)

Supercomputing 2, p.30

Real World Use

What computations are done and how to parallelise?

Å Need to think how computations are done and whether it can be
done using distributed memory or shared memory and whether
GPUs can be used

Å Some compute can be easily done by distributing portions of the
problem to CPUs that do NOT need access to the same memory
and require little communication between CPUs

Å Some compute best tackled with CPUs

Å Some compute involves running the same task on different data
and can make use of GPUs (or specialised compute elements)

Å Some problems are embarrassingly parallel, no communication
between compute units required

Supercomputing 2, p.31

Real World HPC systems

Compute nodes [smallest
compute resource available]
composed of "motherboard" with
CPUs/GPUs, memory, local
storage, fast interconnect

Combine compute nodes together
with interconnect. Have memory
limitations per node, total memory,
some latency in communicating
(which depends on nodes), memory
limitations for GPUs, electricity
limitations, heating issues, etc.

Supercomputing 2, p.32

Real World HPC systems

ÅHPC systems are NOT a single large computer with many CPUs (ie:
single large shared memory machine).

ÅWould have issues in powering cooling, communicating if all CPUs on
same "board"

ÅAlso issues with sharing computational resources between users

ÅSoftware MUST account for the fact that HPC has resources
distributed across many nodes.

Supercomputing 2, p.33

Example: Folding@Home

ÅModels protein folding

ÅAsynchronous compute with heterogeneous elements linked
by internet act like very large HPC machine
ÅEmbarrassingly parallel, data sent to machines over internet,

computation done locally, reduced data products returned.

Supercomputing 2, p.34

Example: Folding@Home

Almost an exaflop
(1 000 000 000 000 000 000 floating

point operations per second)!
More than current top HPC machine

Almost 3 million cores!
Top HPC machine has 7 million, top
10 have ~ million

Supercomputing 2, p.35

Example: Folding@Home

Supercomputing 2, p.36

Example: NWChem

ÅOpen Source High-Performance
Computational Chemistry which handles
ÅBiomolecules, nanostructures, and solid-state

Åquantum to classical, and all combinations

ÅGround and excited-states

ÅGaussian basis functions or plane-waves

ÅProperties and relativistic effects

ÅUses MPI for parallelisation for distributed
computing on (homogeneous) HPC
systems.
ÅEach core runs portion of computation and must

communicate results often to other cores

http://www.nwchem-sw.org/index.php/Main_Page

Supercomputing 2, p.37

Example: NWChem

Data from collaborative project w/ Amir Karton (UWA)

Cores Nodes Walltime (hours) Cost (Node hours)

128 8 11.2 90

256 16 4.4 70

512 32 2.1 67

1024 64 1.0 64

2048 128 0.91 116

4096 256 0.75 192

Fast and low cost

Fastest BUT highest cost
2x 0.8x

Modelling C60 molecule heat of formation

using double-hybrid DFT

E
a

c
h

 c
o

re
 h

a
s
 s

m
a

lle
r

a
m

o
u

n
t

/r
e

g
io

n
 o

f
th

e
 p

ro
b

le
m

 t
o

 s
o

lv
e

2x 0.5x

http://www.nwchem-sw.org/index.php/Main_Page

Supercomputing 2, p.38

How Many Cores?

Fast turnaround

ÅWeigh up between turnaround
time and cost

ÅTotal time = runtime + queue time

High throughput

ÅUse efficient core count (usually
low)

ÅEach job may run longer

ÅRun many jobs

Supercomputing 2, p.39

Increasing Scope of Your
Science

ÅMany computational workloads can expand to consume
more compute power if provided

ÅParallel portion of many workloads expand faster than the serial
portion when the problem size is increased

ÅTackle larger problems with more cores in same amount of
walltime and do better science

Supercomputing 2, p.40

How to Explore

When migrating from a desktop / workstation:

ÅRequest single node with maximum allowed walltime (24 hours on
Magnus)

ÅBase subsequent walltime requests on how long the test job took

When trying larger (MPI) problems:

ÅStart with a known job size, node count and walltime

ÅRepeat for successively larger (and smaller) job sizes and node
count, and extrapolate the required time and understand how the
algorithm scales (Use a table or plot)

Getting Help

ÅSupercomputing Overview

ÅLogging In

ÅSharing Supercomputers

ÅSubmitting Jobs

ÅUsing High Performance Storage

ÅRunning Jobs

ÅReal World HPC Use

ÅGetting Help

Supercomputing 2, p.42

Search Documentation First

Pawsey has extensive documentation: https://support.pawsey.org.au

ÅSystem user guides

ÅKnowledge Base

ÅPawsey-supported software list

ÅMaintenance logs

ÅPolicies and terms of use

https://support.pawsey.org.au/

Supercomputing 2, p.43

Getting Assistance

For further assistance, contact the help desk:

https://support.pawsey.org.au/ (user support portal)

Help us to help you by providing details

E.g.

Å Which resource

Å Error messages

Å Location of files

Å SLURM job id

Å Your username if having login issues

Å Never tell us (or anyone) your password!

https://support.pawsey.org.au/

Supercomputing 2, p.44

Getting Assistance

Join an Ask.Me.Anything session. AMA is an opportunity to join
discussions with Pawsey experts & peers
https://pawsey.org.au/event/pawsey-hour-ask-me-anything/

Consider AMA if

ÅNew researchers who want to know if Pawsey services are for them

ÅCurrent users with specific questions about Pawsey infrastructure
and expertise, or their research challenges

https://pawsey.org.au/event/pawsey-hour-ask-me-anything/

